Abstract

In this study, β-Cyclodextrin (CD) modified Fe3S4 nanomaterials were synthesized by a one-step facile strategy and investigated for the removal of Cr(VI). The resulted CD-Fe3S4 exhibited enhanced removal efficiency toward Cr(VI) than bared Fe3S4 with a maximum capacity of 220.26 mg·g-1 as the molar ratio of CD-to-Fe3S4 at 0.2. The effective performance of CD-Fe3S4 toward Cr(VI) could well maintain under oxic conditions and a wide pH range of aqueous solution. A high selectivity for Cr(VI) was achieved in the presence of coexisting cations and anions. More significantly, a single treatment step of CD-Fe3S4 effectively removed chromium from actual electroplating wastewater to the detection limit of 0.004 mg·L-1 that far below the WHO limitation of Cr (VI) (<0.05 mg·L-1) combing with the rapid magnetic separation without adjusting the pH value of wastewater at 7. The effective removal of Cr (VI) by CD-Fe3S4 involved a complex process of surface adsorption/reduction, and solution homogenous reduction and subsequent sequestration of Cr(III) achieving the effective removal of aqueous total Cr. The superior Cr (VI) removal capability and facial separation of CD-Fe3S4 attained its prominent potential application as an effective material for the Cr(VI) removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call