Abstract

The recrystallization and oxidation of a Mn-containing interstitial free (IF) steel were investigated simultaneously using confocal scanning laser microscope (CSLM) under controlled atmosphere of Ar 95% and H2 5% (in volume percent) at different temperatures. It was found that the grain boundary played a significant role in controlling recrystallization and oxidation in overall oxidation kinetics of the steel. The surface morphology was composed of two networks along the original and new grain boundaries respectively, which did not coexist. The grain boundary moved in different directions with different velocities during annealing process. The recrystallization processes were studied by CSLM motion video through observing the moving grain boundary to estimate the time for 50% recrystallization, and the activation energy for recrystallization was therefore calculated. The oxidation mechanism was discussed through comparison of the fluxes among mass transfer of water vapor, dissociation of water vapor and outward diffusion alloying elements. The results indicated that the oxidation was controlled by the mass transfer from the bulk gas to the surface, or dissociation rate, or outward diffusion of manganese, which depended on the temperature to form a grain boundary ridge or groove.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.