Abstract
The drawback of biochar as a soil ameliorant is its low-nutrient content while the bottleneck of struvite production is its high chemical cost. This drew the idea of using designed biochar for nutrient recovery from nutrient-rich wastewater as struvite. Mg-biochar was used for simultaneous P and N recovery from sewage sludge ash (SSA) and food wastewater (FW) by using ground coffee bean (GCB) and palm tree trunk (PTT) waste. PTT Mg-biochar could recover 92.2% of PO43−-P and 54.8% of NH4+-N while GCB Mg-biochar could recover 79.5% of PO43−-P and 38.6% of NH4+-N. Adsorption, precipitation and cation-exchange mechanisms are involved in the Mg-biochar for the simultaneous recovery of PO43−-P and NH4+-N as struvite. Mg-biochars also showed higher struvite selectivity than the control samples. This method not only supports waste recycling and pollution mitigation but also highlights economical struvite production and the benefits of CO2 sequestration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.