Abstract

A multinomial image model is proposed which uses intensity-level information for reconstruction of contiguous image regions. The intensity-level information assumes that image intensities are relatively constant within contiguous regions over the image-pixel array and that intensity levels of these regions are determined either empirically or theoretically by information criteria. These conditions may be valid, for example, for cardiac blood-pool imaging, where the intensity levels (or radionuclide activities) of myocardium, blood-pool, and background regions are distinct and the activities within each region of muscle, blood, or background are relatively uniform. To test the model, a mathematical phantom over a 64 x 64 array was constructed. The phantom had three contiguous regions. Each region had a different intensity level. Measurements from the phantom were simulated using an emission-tomography geometry. Fifty projections were generated over 180 degrees, with 64 equally spaced parallel rays per projection. Projection data were randomized to contain Poisson noise. Image reconstructions were performed using an iterative maximum a posteriori probability procedure. The contiguous regions corresponding to the three intensity levels were automatically segmented. Simultaneously, the edges of the regions were sharpened. Noise in the reconstructed images was significantly suppressed. Convergence of the iterative procedure to the phantom was observed. Compared with maximum likelihood and filtered-backprojection approaches, the results obtained using the maximum a posteriori probability with the intensity-level information demonstrated qualitative and quantitative improvement in localizing the regions of varying intensities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.