Abstract
Our work is devoted to an inverse problem for three‐dimensional parabolic partial differential equations. When the surface temperature data are given, the problem of reconstructing the heat flux and the source term is investigated. There are two main contributions of this paper. First, an adjoint problem approach is used for analysis of the Fréchet gradient of the cost functional. Second, an improved conjugate gradient method is proposed to solve this problem. Based on Lipschitz continuity of the gradient, the convergence analysis of the conjugate gradient algorithm is studied. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.