Abstract

Simultaneous reconstruction of temperature field and radiative properties including scattering albedo and extinction coefficient is presented in a two-dimensional (2-D) rectangular, absorbing, emitting and isotropically scattering gray medium from the knowledge of the exit radiative intensities received by charge-coupled device (CCD) cameras at boundary surfaces. The inverse problem is formulated as a non-linear optimization problem and solved by stochastic particle swarm optimization. The effects of particle swarm size, generation number, measurement errors, and optical thickness on the accuracy of the estimation, and computing time were investigated and the results show that the temperature field and radiative properties can be reconstructed well for the exact and noisy data, but radiative properties are harder to obtain than temperature field. Moreover, the extinction coefficient is more difficult to reconstruct than scattering albedo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.