Abstract

Many biological processes employ mechanisms involving the locations and interactions of multiple components. Given that most biological processes occur in three dimensions, the simultaneous measurement of three-dimensional locations and interactions is necessary. However, the simultaneous three-dimensional precise localization and measurement of interactions in real time remains challenging. Here, we report a new microscopy technique to localize two spectrally distinct particles in three dimensions with an accuracy (2.35σ) of tens of nanometers with an exposure time of 100 ms and to measure their real-time interactions using fluorescence resonance energy transfer (FRET) simultaneously. Using this microscope, we tracked two distinct vesicles containing t-SNAREs or v-SNARE in three dimensions and observed FRET simultaneously during single-vesicle fusion in real time, revealing the nanoscale motion and interactions of single vesicles in vesicle fusion. Thus, this study demonstrates that our microscope can provide detailed information about real-time three-dimensional nanoscale locations, motion, and interactions in biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.