Abstract

The physical and chemical phenomena that take place during fuel injection, entrainment and fuel-air mixing, cool-flame and ignition reaction, and combustion in diesel sprays still require extensive study. Global parameters such as liquid and vapor jet penetration lengths and spreading rates render useful yet still limited information. Understanding of the temporal evolution of the spray as it progresses through various steps is needed to develop advanced clean combustion modes and high-fidelity predictive models with sufficient accuracy. In this study, high-speed rainbow schlieren deflectometry (RSD) and OH* chemiluminescence are used to simultaneously image fuel-air mixing, cool-flame reactions, ignition, flame propagation and stabilization, and combustion in a transient diesel-like flame. A constant pressure flow rig (CPFR) is used to conduct multiple injections in quick succession to obtain a statistically relevant dataset. n-heptane was injected at nominal supply pressure of 1000 bar from a single-hole diesel injector into ambient at pressure of 30 bar and temperature of 800 K. About 500 injections were performed and analyzed to reveal structural features of non-reacting and reacting regions of the spray, quantify jet penetration and spreading rates, and study cool-flame behavior, ignition, flame propagation and stabilization at lift-off length, and combustion at upstream and downstream locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call