Abstract
The aim of this work was to simultaneously analyse mixtures of a polydisperse polyethylene oxide (PEO) nonionic surfactant and an anionic surfactant (sodium dodecylsulphate, SDS) in water containing sodium chloride in order to quantify trace amounts of these mixtures after their adsorption at water–solid interfaces. A fractional factorial design was then used to optimise the separation by ion-pair reversed-phase liquid chromatography as a function of six factors: the chain length of the tetraalkylammonium salt used as ion-pairing reagent which varied from methyl (C 1) to n-propyl (C 3); the concentration of this ion-pairing salt; the acetonitrile percentage in water used as organic modifier; the flow-rate; the temperature of analysis and also the sodium chloride concentration. The factorial design enabled in a limited number of analyses, not only to determine which factors had significant effects on retention times or on resolution between a pair of nonionic oligomers, but also to modelize and then find the interesting and rugged area where this resolution was optimal as well as the conditions where time of analysis was not prohibitive. After optimisation of HPLC analysis, we used a trace enrichment procedure to quantify very low concentrations of SDS and C 12E 9 polydisperse PEO in water. A C 18 cartridge and a strong anionic exchange cartridge were coupled and the conditions of elution were optimised in order to obtain concentrated samples which were injected in the same eluent than the HPLC mobile phase. Under such conditions, we were able to quantify, in a single run, mixtures of anionic and nonionic surfactants at concentrations as low as 3.6 μg l −1 for SDS and 2.5 μg l −1 for each PEO oligomer in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.