Abstract

Simultaneous detection of mixed bacteria accurately and sensitively is a major challenge in microbial quality control field. In this study, we proposed a label-free SERS technique coupled with partial least squares regression (PLSR) and artificial neural networks (ANNs) for quantitative analysis of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium simultaneously. SERS-active and reproducible Raman spectra can be acquired directly upon the bacteria and Au@Ag@SiO2 nanoparticle composites on the surface of gold foil substrates. After applying different preprocessing models, SERS-PLSR and SERS-ANNs quantitative analysis models were developed to map SERS spectra of concentrations of the Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, respectively. Both models achieved high prediction accuracy and low prediction error, while the performance of SERS-ANNs model in both quality of fit (R2 > 0.95) and accuracy of predictions (RMSE < 0.06) was superior to SERS-PLSR model. Therefore, it is feasible to develop simultaneous quantitative analysis of mixed pathogenic bacteria by proposed SERS methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.