Abstract

In nonclinical drug development targeting the central nervous system (CNS), the quantitative determination of extracellular brain concentrations of neurotransmitters is a key challenge. In some CNS disorders, the monitoring of the modified profile of neurotransmitter release such as that of histamine may explain the mechanism of action of the drug candidate. Microdialysis is a commonly used method for sampling extracellular levels of neurotransmitters/drug candidates in small laboratory animals. Detection and quantification of extracellular levels of neurotransmitters remain an analytical and technical challenge owing to the low concentrations of neurotransmitters collected, the small microdialysis sample size, and the high amount of inorganic salts. A precolumn derivatization strategy prior to hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry analysis is proposed to quantify histamine release after administration of a CNS research compound. Derivatization using propionic anhydride dissolved in organic solvent combined with the HILIC approach effectively eliminated three time-consuming steps, organic layer transfer, dry down, and reconstitution, all of which are required by traditional reversed-phase liquid chromatography. The formation of propionylated amides, performed under mild conditions, required no further sample cleanup. After a dual microdialysis probe implantation into the prefrontal cortex (neurotransmitters) and in the inferior vena cava of rat (drug candidate), microdialysate fractions were collected every 15 min for 8 h and stored frozen at -20 °C until analysis. The method was validated using 10 μL microdialysate, achieving low limits of quantitation of 83.4 and 84.5 pg.mL(-1) for histamine and 1-methylhistamine, respectively. These limits were suitable to assess kinetic release of neurotransmitters and are compatible with those obtained by microdialysis sampling. This method provided the required selectivity, sensitivity, accuracy, and precision to assess release kinetics of histamine and 1-methylhistamine in several hundred rat brain microdialysates after intravenous infusion of CNS drug candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call