Abstract

PurposeDevelop a magnetic resonance fingerprinting (MRF) methodology with R2∗ quantification, intended for use with simultaneous contrast agent concentration mapping, particularly gadolinium (Gd) and iron labelled CD8+ T cells. MethodsVariable-density spiral SSFP MRF was used, modified to allow variable TE, and with an exp.(−TE·R2∗) dictionary modulation. In vitro phantoms containing SPIO labelled cells and/or gadolinium were used to validate parameter maps, probe undersampling capacity, and verify dual quantification capabilities. A C57BL/6 mouse was imaged using MRF to demonstrate acceptable in vivo resolution and signal at 8× undersampling necessary for a 25-min scan. ResultsStrong agreement was found between conventional and MRF-derived values for R1, R2, and R2∗. Expanded MRF allowed quantification of iron-loaded CD8+ T cells. Results were robust to 8× undersampling and enabled recreation of relaxation profiles for both a Gd agent and iron labelled cells simultaneously. In vivo data demonstrated sufficient SNR in undersampled data for parameter mapping to visualise key features. ConclusionMRF can be expanded to include R1, R2, and R2∗ mapping required for simultaneous quantification of gadolinium and SPIO in vitro, allowing for potential implementation of a variety of future in vivo studies using dual MR contrast agents, including molecular imaging of labelled cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call