Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines are the most promising approach to control the COVID-19 pandemic. There are eminent needs to develop robust analytical methods to ensure quality control, as well as to evaluate the long-term efficacy and safety of vaccine. Although in vivo animal tests, such as serum-based ELISA, have been commonly used for quality control of vaccines, these methods have poor precision, are labor intensive, and require the availability of expensive, specific antibodies. Thus, there is growing interest to develop robust bioanalytical assays as alternatives for qualitative and quantitative evaluation of complex vaccine antigens. In this study, a liquid chromatography tandem mass spectrometry method was developed using optimized unique peptides for simultaneous determination of spike (S) and nucleocapsid (N) protein. Method sensitivity, linearity, repeatability, selectivity, and recovery were evaluated. The amount of S and N proteins in 9 batches of inactivated COVID-19 vaccines were quantified, and their compositions relative to total protein content were consistent. We believe this method can be applied for quality evaluation of other S and/or N protein based COVID-19 vaccine, and could be extended to other viral vector, and protein subunit-based vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.