Abstract
BackgroundSpinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by defects in the survival motor neuron 1 (SMN1) gene. Homozygous deletion of the SMN1 gene accounts for 95% of all affected SMA patients. A highly homologous gene survival motor neuron 2 (SMN2) compensates weakly with the loss of SMN1 and its copy number correlates with disease severity. MethodsWe report here the MS-CNV method combining competitive PCR and MALDI-TOF mass spectrometry for simultaneous quantification of SMN1, SMN2 and NAIP dosages. For both SMN1 and SMN2, the exon 7 and exon 8 were analyzed. MS-CNV was validated with parallel analysis by a commercial MLPA assay in two independent cohorts. ResultsIn the first cohort of 79 blood samples containing 3 SMA patients and 5 carriers, MS-CNV results were highly concordant with MLPA analysis for the copy numbers of SMN1, SMN2 and NAIP. In the second independent and blinded cohort of 62 blood samples containing 21 SMA patients and 14 carriers, MS-CNV results were also highly concordant with MLPA. Both MS-CNV and MLPA quantified SMN1 dosages without ambiguity. ConclusionsMS-CNV can be used for carrier screening and genetic diagnosis of SMA, providing dosages information for both SMN1 and SMN2 given its accuracy and high sample processing throughput by mass spectrometric analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.