Abstract
Background: Ageratum conyzoides L. is a traditionally used herb for various ethnoveterinary purposes. There are no earlier reports on simultaneous high-performance thin layer chromatography (HPTLC) quantification of bioactive markers. Objective: To develop a sensitive, robust, and replicable HPTLC method for simultaneous estimation of precocene I (PI) and precocene II (PII) in A. conyzoides L. collected from the Western Himalaya region of India, with an aim to understand the level of chemotypic differences arising in the intraspecific population of this ethnobotanically important plant. Materials and Methods: A sensitive HPTLC method was developed to resolve PI and PII using toluene: ethyl acetate (9.8:0.2 v/v) as mobile phase. The method was validated for selectivity, specificity, linearity, and precision as per International Conference on Harmonization guidelines. Results: Good linearity was achieved over a five-point concentration range with a correlation coefficient of 0.986 and 0.988 for PI and PII, respectively. The PI content varies in the range of 0.0016% (NAC-77) to 0.0834% (NAC-82), whereas PII was reported to be present in the range of 0.016% (NAC-85) to 0.143% (NAC-91) on a dry weight basis. A principal component analysis biplot of samples based on the content of PI and PII identified four elite chemotypes, namely, NAC-81, NAC-82, NAC-85, and NAC-91. Conclusion: The study identifies superior germplasms for commercial prospection and develops a validated method that can be used for the quality control of herbal drug/formulation using A. conyzoides as an ingredient. Abbreviations used: HPTLC: High performance thin layer chromatography, PI: Precocene I, PII: Precocene II, ICH: International conference on harmonization, SD: Standard deviation, RSD: Relative standard deviation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.