Abstract

To date, it has been problematic to accurately quantify multiple nucleic acid sequences, representing microbial targets, in multi-target mixtures using oligonucleotide microarrays, primarily due to nonspecific target binding ( i.e., cross-hybridization). While some studies ignore the effects of nonspecific binding, other studies have developed approaches to minimize nonspecific binding, such as physical modeling to design highly specific probes, subtracting nonspecific signal using mismatch probes, and/or removing nonspecific duplexes by scanning through a range of wash stringencies. We have developed an alternative approach that, in contrast to previous approaches, uses nonspecific target binding as a source of information. Specifically, the new approach uses hybridization patterns (fingerprints) to quantify specific nucleic acid targets in complex target mixtures. We evaluated the approach by mixing together in vitro transcribed 28S rRNA targets at varying concentrations (up to 1.0 nM), and hybridizing the 24 mixtures to microarrays ( n = 3160 probes, in duplicate). Three independent Latin-square-designed experiments revealed accurate quantification of the targets. The regression between actual concentration of targets and those determined by the approach were highly positively correlated with high R 2 values ( e.g., R 2 = 0.90, n = 6 targets; R 2 = 0.84, n = 8 targets; R 2 = 0.82, n = 10 targets).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.