Abstract

BackgroundMalaria is one of the most lethal and life-threatening infectious diseases in the world, causing more than half a million deaths annually. Treatment with mefloquine and artesunate is currently recommended by the World Health Organization, and was historically the first artemisinin-based combination therapy used clinically for treatment of Plasmodium falciparum. The problem of poor-quality medicines, such as counterfeit and sub-standard anti-malarials, is a worldwide issue; therefore, it is essential to develop rapid, low cost, solvent-free, and reliable methods for routine quality control for these drugs. The aim of this study was to develop and validate a novel multivariate method for direct simultaneous quantification of mefloquine and artesunate in tablets by diffuse reflectance, middle infrared spectroscopy and partial least squares regression (MIR-PLS).MethodsDiffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and partial least squares regression were applied for simultaneous quantification of artesunate and mefloquine in tablets provided by the Brazilian Government. The model was obtained with full spectra (4000–400 cm−1) preprocessed by first derivative and Savitzky-Golay smoothing followed by mean centring, and built with three latent variables. The method was validated according to Brazilian and international guidelines through the measuring of figures of merit, such as trueness, precision, linearity, analytical sensitivity, selectivity, bias, and residual prediction deviation. The results were compared to an HPLC–MS/MS method.ResultsThe MIR-PLS method provided root mean square errors of prediction lower than 2.0 mg per 100 mg of powder for the two analytes, and proved to be valid according to guidelines for analytical methods that use infrared (IR) spectroscopy with multivariate calibration. For the samples obtained from Brazilian healthcare units, the method provided results statistically similar to those obtained by HPLC–MS/MS.ConclusionMIR-PLS was found to be suitable for the quality control of these drugs. It is fast, does not use solvents, and does not generate chemical waste. Furthermore, the proposed method may be transferred and developed for use in portable equipment, increasing the possibilities for assessing the quality of these drugs.

Highlights

  • Malaria is one of the most lethal and life-threatening infectious diseases in the world, causing more than half a million deaths annually

  • In order to increase the spectrum of therapeutic action and its effectiveness, as well as preventing anti-malarial drug resistance, the World Health Organization (WHO) recommends that artemisininbased combination therapy (ACT), such as artesunate (ARS) and mefloquine (MFQ), be used for the treatment of uncomplicated P. falciparum malaria [3, 4]

  • Methods based on diffuse reflectance infrared Fourier transform (DRIFT) middle infrared spectroscopy (MIR) and near infrared (NIR) spectroscopy have been adopted in the pharmaceutical industry for raw material testing and process monitoring, and have become a reliable alternative for the quality control of active pharmaceutical ingredients (APIs) [20,21,22,23,24,25,26]

Read more

Summary

Introduction

Malaria is one of the most lethal and life-threatening infectious diseases in the world, causing more than half a million deaths annually. Treatment with mefloquine and artesunate is currently recommended by the World Health Organization, and was historically the first artemisinin-based combination therapy used clinically for treatment of Plasmodium falciparum. Malaria is a human infection caused by some protozoan parasites of the genus Plasmodium [1]. In order to increase the spectrum of therapeutic action and its effectiveness, as well as preventing anti-malarial drug resistance, the World Health Organization (WHO) recommends that artemisininbased combination therapy (ACT), such as artesunate (ARS) and mefloquine (MFQ), be used for the treatment of uncomplicated P. falciparum malaria [3, 4]. ACT consists of the use of two drugs with different modes of action, combining the immediate effect of an artemisinin-derivative that rapidly clears asexual blood-stage parasites and gametocytes, as well as a drug that has a longer half-life, eliminating residual parasites [6]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.