Abstract

In the present study, an accurate, simple and fast bioanalytical method based on ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) technique for simultaneous quantification of plasma selexipag and its main metabolite ACT-333679 concentrations in rats was optimized and established. The purpose of chromatographic separation of selexipag, ACT-333679 and the internal standard (IS, diazepam) was accomplished using an Acquity BEH C18 (2.1 mm × 50 mm, 1.7 μm) column. The mobile phase was consisted of acetonitrile (solution A) and 0.1 % formic acid in water (solution B) in a linear gradient elution procedure with a flow rate of 0.40 mL/min. The measurement of the analytes and IS was explored using a XEVO TQ-S triple quadrupole tandem mass spectrometer, which was comprised with electrospray ionization (ESI) source in positive ion mode. Selected multiple reaction monitoring (MRM) mode was employed to detect the parent-to-daughter ion transitions as follows: m/z 497.4 → 302.2 for selexipag, m/z 420.1 → 378.2 for ACT-333679, and m/z 285.0 → 154.0 for diazepam (IS), respectively. The new UPLC-MS/MS method showed good linearity respectively at the calibration curve range of 0.05−50 ng/mL for selexipag, and 0.05−250 ng/mL for ACT-333679. The intra- and inter-day of accuracy and precision were all within the acceptable limits in the bioanalytical method, and the results of recovery and matrix effect were also met the requirements. The newly developed UPLC-MS/MS assay was forward successfully used to describe the pharmacokinetic profiles of selexipag and ACT-333679 in rats after oral treatment with 6.0 mg/kg selexipag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call