Abstract

Index tracking is a passive investment strategy in which a fund (e.g., an ETF: exchange traded fund) manager purchases a set of assets to mimic a market index. The tracking error, i.e., the difference between the performances of the index and the portfolio, may be minimized by buying all the assets contained in the index. However, this strategy results in a considerable transaction cost and, accordingly, decreases the return of the constructed portfolio. On the other hand, a portfolio with a small cardinality may result in poor out-of-sample performance. Of interest is, thus, constructing a portfolio with good out-of-sample performance, while keeping the number of assets invested in small (i.e., sparse). In this paper, we develop a tracking portfolio model that addresses the above conflicting requirements by using a combination of L0- and L2-norms. The L2-norm regularizes the overdetermined system to impose smoothness (and hence has better out-of-sample performance), and it shrinks the solution to an equally-weighted dense portfolio. On the other hand, the L0-norm imposes a cardinality constraint that achieves sparsity (and hence a lower transaction cost). We propose a heuristic method for estimating portfolio weights, which combines a greedy search with an analytical formula embedded in it. We demonstrate that the resulting sparse portfolio has good tracking and generalization performance on historic data of weekly and monthly returns on the Nikkei 225 index and its constituent companies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.