Abstract

In this paper, a hydromechanical coupled finite-discrete element method, which considers the non-planar three-dimensional growth, pressure continuity along the horizontal well, dynamic flow rate distributions among clusters, perforation friction, and fracturing fluid leakage, is employed to simulate the simultaneous growth of hydraulic fractures from an array of five perforation clusters in tight reservoirs interbedded with alternating stiff and soft layers. The simulation results highlight that the stress shadow induced by the non-planar propagation of the outmost hydraulic fractures stops the planar growth of the interior and middle hydraulic fractures and causes uneven fracturing fluid distribution among perforation clusters. The results demonstrate that the generated fracture pattern in the stage becomes more symmetric overall with the decreasing modulus of the soft layers. As the soft layer's modulus decreases, the total fracture height decreases significantly, but the local fracture aperture distribution increases, which leads to the reduction of total fracture area and leak-off volume of fracturing fluid as well as the increase of total fracture volume. The total fracture area decreases with the increasing leak-off coefficient and perforation number, but the total leak-off volume and total fracture volume increase. The violation of the fluid pressure continuity by without considering the dynamic flow rate distributions overestimates the growth of the interior and middle hydraulic fractures and produces a smaller total fracture area. It is also found that the adjustment of pumping rate is more effective than using nonuniform cluster spacing in promoting the simultaneous hydraulic-fracture growth in layered tight reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call