Abstract

Rice is a starch-rich raw material that can be used for trehalose production. It can be hydrolyzed with alpha-amylase, beta-amylase, and pullulanase to produce high-maltose content of rice saccharified solution for bioconversion of maltose into trehalose by trehalose synthase (TSase). For this purpose, an efficient enzymatic procedure has been successfully developed to simultaneously produce value-added trehalose, bioethanol, and high-protein product from rice as substrate. The highest maltose yield produced from the liquefied rice starch hydrolysate was 82.4 +/- 2.8% at 50 degrees C and pH 5.0 for 21-22 h. The trehalose conversion rate can reach at least 50% at 50 degrees C and pH 5.0 for 20-24 h by a novel thermostable recombinant Picrophilus torridus trehalose synthase (PTTS). All residual sugar, except trehalose, can be fully hydrolyzed by glucoamylase into glucose for further bioethanol production. The insoluble byproduct containing high yields of protein (75.99%) and dietary fiber (14.01%) can be processed as breakfast cereal product, health food, animal forage, etc. The conversion yield of bioethanol was about 98% after 64 h of fermentation time by Saccharomyces cerevisiae without any artificial culture solution addition. Ethanol can easily be separated from trehalose by distillation with a high recovery yield and purity of crystalline trehalose of 92.5 +/- 8.7% and 92.3%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call