Abstract

Considering the environmental impacts, rapid fossil fuel depletion and production costs, sustainable production of clean biofuels from alternative sources is required to meet the increasing demand for energy while avoiding environmental pollution. In this study, phytogenic cobalt nanoparticles (CoNPs)-assisted dark fermentation process was developed for the simultaneous production of biohydrogen, biobutanol and biopolymer from glucose using Clostridium acetobutylicum NCIM 2337. The maximum biohydrogen yield of 2.89 mol H2/mol glucose was achieved at 1.5 mg of CoNPs, which is 1.6 folds higher than that of the control experiment. The high level of soluble metabolites, specifically acetate and butyrate, confirmed the production of biohydrogen through acetate/butyrate pathways. The modified Gompertz model fitted well with experimental results of CoNPs-assisted biohydrogen production. The CoNPs could act as an electron carrier in intracellular metabolism to enhance the activity of ferredoxin and hydrogenase enzymes, thus improving biohydrogen production. Furthermore, biobutanol and biopolymer yields of 975 ± 2.5 mg/L and 1182 ± 1.4 mg/L were achieved, with 2.0 mg and 2.5 mg of CoNP, respectively, which were 1.27 and 1.19 folds higher than the control values. Hence, the inclusion of CoNPs in the fermentation medium seems to be a promising technique for the enhanced simultaneous production of biohydrogen, biobutanol and biopolymer. The environmental perspectives of the obtained renewable biohydrogen, biobutanol and biopolymer are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call