Abstract

Serious global problems faced due to many petroleum-based materials in the last century, which is called the plastic age, constitute the main motivation of this research. Considering wastewater treatment from this perspective, both the recovery of organic acids from wastewater and their conversion into bioplastics are extremely important in terms of reducing petroleum dependency. In this study, while the treatment of landfill leachate was provided with biological process integrated into Mechanical Vapor Recompression (MVR), simultaneously PHBV production was carried out with 84.9% recovered VFA as carbon source. The effects of C/N/P ratio and feeding regime on PHBV storage were investigated by Cupriavidus necator. PHBV storage of 96% (g PHBV/g DCW) was maximized by 2-stage feeding and nitrogen restriction. The ratio of 3HV to 3HB of PHBV was 45%. In addition, extracted PHBV was compared with standard PHA in terms of thermal and chemical properties with FTIR, XRD, TGA and DSC analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call