Abstract

An integrated biorefinery is a processing facility that converts biomass feedstocks into a wide range of value added products (e.g., biofuels, specialty chemicals) via multiple technologies. To synthesize a sustainable integrated biorefinery, consumption of energy within such biorefinery should be self-sustained. The performances of integrated biorefinery can be improved via simultaneous process synthesis, heat and power integration. Due to the complexity of the process synthesis and integration problem, there is a need for a systematic approach to address the problem. In this work, the modular optimization approach, which breaks a large optimization problem into small models, is adapted to solve the complex problem. This allows engineers to ‘zoom in’ on specific key process units in a smaller model. Based on the proposed approach, selection of the optimum process alternatives/technologies and products, as well as integration of heat and power between process units, can be performed simultaneously. To illustrate the capability of proposed approach, two case studies are solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.