Abstract

High-frequency pressure sensors were used in conjunction with a high-speed schlieren system to study the growth and breakdown of boundary-layer disturbances into turbulent spots on a 7◦ cone in the Sandia Hypersonic Wind Tunnel. At Mach 5, intermittent low-frequency disturbances were observed in the schlieren videos. High-frequency secondmode wave packets would develop within these low-frequency disturbances and break down into isolated turbulent spots surrounded by an otherwise smooth, laminar boundary layer. Spanwise pressure measurements showed that these packets have a narrow spanwise extent before they break down. The resulting turbulent fluctuations still had a streaky structure reminiscent of the wave packets. At Mach 8, the boundary layer was dominated by secondmode instabilities that extended much further in the spanwise direction before breaking down into regions of turbulence. The amplitude of the turbulent pressure fluctuations was much lower than those within the second-mode waves. These turbulent patches were surrounded by waves as opposed to the smooth laminar flow seen at Mach 5. At Mach 14, second-mode instability wave packets were also observed. Theses waves had a much lower frequency and larger spanwise extent compared to lower Mach numbers. Only low freestream Reynolds numbers could be obtained, so these waves did not break down into turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.