Abstract

Safe interactions between humans and robots are needed in several industrial processes and service tasks. Compliance design and control of mechanisms is a way to increase safety. This article presents a compliant revolute joint mechanism using a biphasic media variable stiffness actuator. The actuator has a member configured to transmit motion that is connected to a fluidic circuit, into which a biphasic control fluid circulates. Stiffness is controlled by changing pressure of control fluid into distribution lines. A mathematical model of the actuator is presented, a model-based control method is implemented to track the desired position and stiffness, and equations relating to the dynamics of the mechanism are provided. Results from force loaded and unloaded simulations and experiments with a physical prototype are discussed. The additional information covers a detailed description of the system and its physical implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call