Abstract

We present a technique for state-selective position detection of cold Rydberg atoms. Ground state Rb atoms in a magneto-optical trap are excited to a Rydberg state and are subsequently ionized with a tailored electric field pulse. This pulse selectively ionizes only atoms in e.g. the 54d state and not in the 53d state. The released electrons are detected after a slow flight towards a micro channel plate. From the time of flight of the electrons the position of the atoms is deduced. The state selectivity is about 20:1 when comparing 54d with 53d and the one-dimensional position resolution ranges from 6 to 40 μm over a range of 300 μm. This state selectivity and position resolution are sufficient to allow for the observation of coherent quantum excitation transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call