Abstract

High-temporal-resolution measurements of scalars and velocity are used to study vortex-induced annular (off-centerline) flame extinction during the interaction of a propagating vortex with an initially stationary counterflow hydrogen-air diffusion flame. Such an extinction process differs from classical one-dimensional descriptions of strained flamelets in that it captures the effects of flame curvature as well as dynamic strain. Planar laser-induced fluorescence (PLIF) measurements of the hydroxyl radical (OH) are used to track flame development, and simultaneous particle-image velocimetry (PIV) is used to characterize the two-dimensional flowfield. Measurements reveal differences in local normal strain rate profiles along and across the reaction zone and indicate that vortex-induced curvature in the annular region may initiate the extinction process. In addition, the effect of local flame extinction on vortex evolution and dissipation is determined from measured vorticity data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call