Abstract

This article presents a methodology and process for a combined wing configuration partial topology and structure size optimization. It is aimed at achieving a minimum structural weight by optimizing the structure layout and structural component size simultaneously. This design optimization process contains two types of design variables and hence was divided into two sub-problems. One is structure layout topology to obtain an optimal number and location of spars with discrete integer design variables. Another is component size optimization with continuous design variables in the structure FE model. A multi city-layer ant colony optimization (MCLACO) method is proposed and applied to the topology sub-problem. A gradient based optimization method (GBOM) built in the MSC.NASTRAN SOL-200 module was employed in the component size optimization sub-problem. For each selected layout of the wing structure, a size optimization process is performed to obtain the optimum result and feedback to the layout topology process. The numerical example shows that the proposed MCLACO method and a combination with the GBOM are effective for solving such a wing structure optimization problem. The results also indicate that significant structural weight saving can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.