Abstract

AbstractImprovement and optimization of numerical sea ice models are of great relevance for understanding the role of sea ice in the climate system. They are also a prerequisite for meaningful prediction. To improve the simulated sea ice properties, we develop an objective parameter optimization system for a coupled sea ice–ocean model based on a genetic algorithm. To take the interrelation of dynamic and thermodynamic model parameters into account, the system is set up to optimize 15 model parameters simultaneously. The optimization is minimizing a cost function composed of the model–observation misfit of three sea ice quantities (concentration, drift, and thickness). The system is applied for a domain covering the entire Arctic and northern North Atlantic Ocean with an optimization window of about two decades (1990–2012). It successfully improves the simulated sea ice properties not only during the period of optimization but also in a validation period (2013–16). The similarity of the final values of the cost function and the resulting sea ice fields from a set of 11 independent optimizations suggest that the obtained sea ice fields are close to the best possible achievable by the current model setup, which allows us to identify limitations of the model formulation. The optimized parameters are applied for a simulation with a higher-resolution model to examine a portability of the parameters. The result shows good portability, while at the same time, it shows the importance of the oceanic conditions for the portability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.