Abstract

AbstractThe aim of this paper is to develop the theory of weighted Diophantine approximation of rational numbers to p-adic numbers. Firstly, we establish complete analogues of Khintchine’s theorem, the Duffin–Schaeffer theorem and the Jarník–Besicovitch theorem for ‘weighted’ simultaneous Diophantine approximation in the p-adic case. Secondly, we obtain a lower bound for the Hausdorff dimension of weighted simultaneously approximable points lying on p-adic manifolds. This is valid for very general classes of curves and manifolds and have natural constraints on the exponents of approximation. The key tools we use in our proofs are the Mass Transference Principle, including its recent extension due to Wang and Wu in 2019, and a Zero-One law for weighted p-adic approximations established in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.