Abstract

Despite the frequent use of silver nanoparticles in consumer products and medical treatments, their reactivity and degradation in aqueous suspensions are still under debate. Here we elucidate this reactivity by an in situ opto- and spectro-electrochemical approach. Using dark-field microscopy coupled to a spectrophotometer and to an electrochemical cell, redox reactions of individual silver nanoparticles are studied in the presence of chloride. The intensity and spectral position of the plasmon resonance of an individual particle are tracked simultaneously in real time during cyclic voltammetry. They both change almost instantaneously with the detected current in a chemically reversible way. Thus, it is evidenced that the intensity decrease of the optical signal at the silver peak position is caused by the reversible formation of silver chloride and not by dissolution of silver. Moreover, at large positive potentials, further transformation to silver oxide or chlorite is revealed spectroscopically, although the electrochemical current is hidden by water and chloride oxidation. Thus, the combination of electrochemistry with dark-field microscopy and hyperspectral imaging is introduced as a new tool for real-time analysis of (electro-)chemical reactions of nanoparticles on a single-entity level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.