Abstract

By representing the swept envelope of a generic rotary cutter as a sphere-swept surface, our previous work on distance function based tool path optimization is extended to develop the model and algorithm for simultaneous optimization of the tool path and shape for five-axis flank milling. If the tool path is fixed, a novel tool shape optimization method is obtained. If the tool shape is fixed, a tool path optimization method applicable to any rotary cutter is obtained. The approach applies to non-ruled surfaces, and also finds applications in cutter dimension optimization and flank millable surface design. Numerical examples are given to confirm its validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call