Abstract
In current optimization methods for free-form shells, the shape and topology are usually optimized separately. These methods are based on the assumption that the shape and topology of a shell influence each other only slightly, but this is not always correct. Moreover, different parameterization models are used in the shape optimization and topology optimization of free-form shells, which brings difficulties to carry out the integrated optimization. To solve this problem, an integrated method is proposed for simultaneously optimizing shape and topology for free-form shells. A uniform parameterization model based on NURBS solids is established to parameterize the free-form shells. In this model, only a small number of variables are used to describe both the shape and topology of the shell. In this way, the integrated optimization problem can be simplified, thus decrease the computational complexity. The integrated optimization of shape and topology is a complicated and large-scale optimization problem. Solving this problem requires a suitable optimization method. In this paper, the Method of Moving Asymptotes (MMA) is adopted. Finally, numerical examples are presented to address the importance of the optimization sequences and show the effectiveness and application of the proposed method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.