Abstract

We have extended the fully variational molecular orbital (FVMO) method to the full-configuration interaction (CI) wave function (full-CI FVMO). All variational parameters in the full-CI scheme, i.e., exponents and centers in Gaussian-type function (GTF) basis set, and nuclear positions, as well as the CI coefficients, are simultaneously optimized by using their analytical gradients. We have applied the full-CI FVMO method to the ground and electronic excited states of hydrogen molecule. In the ground state, the total energy (−1.174 015 hartree) and the internuclear distance (1.4016 bohr) obtained by the full-CI FVMO calculation with [8s4p2d] GTFs agree very well with the high-level calculation by the 249 term expansion in elliptic coordinates (−1.174 476 hartree and 1.4010 bohr, respectively). The excitation energies to the Σu+1, Πu1, Σg+3, and Πu3 Rydberg states calculated by the full-CI FVMO method with [8s4p2d] GTFs coincide with the experimental values within 52 cm−1. The present result can not be obtained with the conventional basis set approach because of the fact that our full-CI FVMO calculation gives an extremely accurate wave function with a relatively small number of basis functions owing to the extension of flexibility in the variational space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.