Abstract

AbstractReal-world multibody systems are often subject to phenomena like friction, joint clearances, and external events. These phenomena can significantly impact the optimal design of the system and its controller. This work addresses the gradient-based optimization methodology for multibody dynamic systems with joint friction using a direct sensitivity approach. The Brown–McPhee model has been used to characterize the joint friction in the system. This model is suitable for the study due to its accuracy for dynamic simulation and its compatibility with sensitivity analysis. This novel methodology supports codesign of the multibody system and its controller, which is especially relevant for applications like robotics and servo-mechanical systems, where the actuation and design are highly dependent on each other. Numerical results are obtained using a software package written in Julia with state-of-the-art libraries for automatic differentiation and differential equations. Three case studies are provided to demonstrate the attractive properties of simultaneous optimal design and control approach for certain applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.