Abstract

Using a high-speed camera system and two electric field antenna systems, we have documented the initial processes of an altitude-triggered negative lightning (ATNL). The optical records clearly show that ATNL begins with the inception and propagation of an upward positive leader (UPL) and then a simultaneous propagation of UPL and downward negative leader (DNL), known as the bidirectional leader process, follows. Based on the optical records, it is inferred that (1) the triggering height is about 371 m; (2) the two-dimensional (2D) propagation speed of the UPL in its inception phase is about 3.8–5.5 × 10 4 m s − 1 during its propagation from about 393 to 452 m above the ground; (3) the grey levels of the DNL are about one order of magnitude higher than that of the UPL in their inception phase; (4) a discharge phenomenon propagating along the elevated triggering wire part of the lightning channel occurs after the mini-return stroke (MRS), with a 2D propagation speed of about 1.6–2.0 × 10 5 m s − 1 . Combined with the simultaneous electric field change records, it is further inferred that (1) the UPL incepts about 932 μs earlier than the unstable DNL and about 4.1 ms earlier than the stable DNL; (2) the unstable DNL propagates downward intermittently three times with a time interval of about 1 ms, and each propagation contains a different number of steps with an average step length of about 7 m; (3) the stable DNL incepts at the tip of the unstable one, with a 2D propagation speed of about 1.9 × 10 5 m s − 1 , an average step length of about 3 m, and a stepping time interval varying from 6 to 31 µs with a mean value of 15 µs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call