Abstract

Many applications in microelectromechanical systems require physical actuation for implementation or operation. On-chip sensors would allow control of these actuators. This paper presents experimental evidence showing that a certain class of thermal actuators can be used simultaneously as an actuator and a sensor to control the actuator's force or displacement output. By measuring the current and voltage supplied to the actuator, a one-to-one correspondence is found between a given voltage and current and a measured displacement or force. This integrated sensor/actuator combination will lead to efficient on-chip control of motion for applications including microsurgery, biological cell handling, and optic positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.