Abstract

ABSTRACT In the present study, we consider planar piecewise linear vector fields with two zones separated by the straight line x = 0. Our goal is to study the existence of simultaneous crossing and sliding limit cycles for such a class of vector fields. First, we provide a canonical form for these systems assuming that each linear system has centre, a real one for y<0 and a virtual one for y>0, and such that the real centre is a global centre. Then, working with a first-order piecewise linear perturbation we obtain piecewise linear differential systems with three crossing limit cycles. Second, we see that a sliding cycle can be detected after a second-order piecewise linear perturbation. Finally, imposing the existence of a sliding limit cycle we prove that only one adittional crossing limit cycle can appear. Furthermore, we also characterize the stability of the higher amplitude limit cycle and of the infinity. The main techniques used in our proofs are the Melnikov method, the Extended Chebyshev systems with positive accuracy, and the Bendixson transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.