Abstract

A comparative study of upstreaming energetic ions in the kilovolt energy range and electrostatic hydrogen cyclotron (EHC) waves has been made using the ion mass spectrometer and plasma wave receiver data sets for the first 1200 orbits of the S3‐3 spacecraft. The upstreaming energetic ions and EHC waves are found to coincide in over 90% of the events studied. In addition, both EHC waves and upstreaming ions with energies greater than 500 eV exhibit a lower border in their altitude distribution near 5000 km. The nearly exact correlation suggests either that the upstreaming ions are producing the EHC waves or that the EHC waves are heating the ions. One example of EHC waves and upstreaming energetic ions is analyzed to test the two hypotheses. Evidence that EHC waves are heating ions is presented in the form of conic ion distributions which some theories predict are the consequence of this process. Perpendicular ion heating to at least 6 keV is found to coincide with EHC waves. Evidence that the upstreaming ions are the source of free energy for the EHC waves is presented in the form of an ion distribution function with ∂f/∂ν > 0. However, the stability of that ion distribution function is considered and found to be stable unless other conditions such as filamentation or electron drift are invoked. There also exists the possibility that the source of free energy for EHC waves is drifting thermal electrons. For the one example studied the drifting electron process is consistent with data from the S3‐3 magnetometer. However, it is inconsistent with the S3‐3 electron spectrometer which indicates that the current is carried by keV electrons, not thermal electrons. Consequently, the source of free energy for EHC waves is not yet unambiguously determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call