Abstract

To enhance the startup and efficient simultaneous nitrification and denitrification for sewage treatment, sequencing batch biofilm reactors (SBBRs) partially coupled with rice husk were established and operated under various intermittent micro-aeration cycles (IMCs) and COD/N ratios under oxygen-limiting intermittent aeration conditions. Experimental results showed that the increase of IMCs with non-aeration/micro-aeration mode of (8h/4h)1 to (2h/1h)4 in a 12h-cycle accelerated the startup performance and improved NH4+-N and COD removal. NH4+-N, TN and COD removal efficiencies were 98.7 ± 0.9, 89.2 ± 5.2 and 82.9 ± 6.7% at COD/N ratio of 7.6 with the highest IMCs in SBBR, respectively. Higher TN removal efficiencies of 87.2 ± 4.0 and 58.1 ± 3.5% were also achieved at lower COD/N ratio of 5.6 and 2.8, respectively. In SBBRs with various IMCs, facultative denitrifier like genus Acinetobacter and solid-phase denitrifier belonging to Comamonadaceae family were enriched. However, aerobic denitrifiers with function of heterotrophic nitrification like Paracoccus were favored to enrich under higher IMCs condition, and more anoxic denitrifiers like sulfur-based autotrophic denitrifier Thiothrix and heterotrophic denitrifiers like Pseudomonas and Methyloversatilis were observed at lower IMCs condition. Autotrophic nitrifier (Nitrosomonas and Nitrosipra) and heterotrophic nitrifiers both contributed to the efficient nitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call