Abstract

ABSTRACT A multi-anode microbial fuel cell (MA-MFC) was developed to investigate simultaneous nitrification and denitrification (SND) in the bio-cathode. As the chemical oxygen demand to nitrogen (COD/N) ratio of the cathode was increased from 0 to 4.5, the electricity-producing quantity ranged between 498 and 543 C and the attained total nitrogen (TN) removal rate reached 12.07 g TN·m−3·d−1, resulting in a TN removal efficiency of 78.8% under the target COD/N ratio of 3.5. The removal of pollutants in series and parallel, open-circuit and closed-circuit were compared, respectively. The removal rates of TN, , and cathode and anode COD were all higher in the parallel connection configuration than in the series configuration. In parallel connection, the TN removal rate reached 14.4 g TN·m−3·d−1, which was 1.9 times that in series connection. Compared with the open-circuit system, the removal rate of TN in the closed-circuit system was improved by 17.8%, which could be ascribed to electrochemical denitrification. The results of high-throughput sequencing confirmed and clarified the presence of autotrophic denitrification and heterotrophic denitrification, including aerobic denitrification, when the MA-MFC had been operated for 18 months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call