Abstract

Considerable advances have been made in the substrate design and operation strategies of constructed wetlands to facilitate nitrogen elimination. However, few studies examined the complicated interaction between solid organic substrates and limited aeration on nitrogen removal. A vertical flow constructed wetlands in gradient distribution of inorganic and solid organic substrates (polycaprolactone/PCL) (P-VFCW) and a controlled vertical flow constructed wetland without PCL (C-VFCW) were developed for the tertiary treatment of municipal tailwater. Results indicated that ammonia was nearly converted to nitrate, while the total nitrogen removal efficiencies (TNREs) in C-VFCW were negligible. In P-VFCW, however, optimal TNREs approached 95% with an aeration rate of 0.06mL·min-1 and hydraulic retention time (HRT) of 24h, and simultaneous nitrification and denitrification process (SND) in aerobic conditions was confirmed. As for the spatial microbial community structure evolution, Comamonas, which is associated with heterotrophic nitrification and anoxic/aerobic denitrification, was enriched along the vertical profiles of P-VFCW. Autotrophic nitrifier (Nitrospira), aerobic denitrifier (Bradyrhizobium and Azospira), and anoxic denitrifier (Ignavibacterium and Methyloversatilis) were dominated in different depths of P-VFCW, respectively. Besides, Canna indica biomass in P-VFCW was significantly larger than that in C-VFCW, which was attributed to the plant adaption response to diverse nitrogen. The P-VFCW in gradient distribution of inorganic and solid carbon sources under limited aeration is a promising technology for advanced nitrogen removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call