Abstract
We have constructed a near-real-time combined imager suitable for simultaneous ultrasound and near-infrared diffusive light imaging and coregistration. The imager consists of a combined hand-held probe and the associated electronics for data acquisition. A two-dimensional ultrasound array is deployed at the center of the combined probe, and 12 dual-wavelength laser source fibers (780 and 830 nm) and 8 optical detector fibers are deployed at the periphery. We have experimentally evaluated the effects of missing optical sources in the middle of the combined probe on the accuracy of the reconstructed optical absorption coefficient and assessed the improvements of a reconstructed absorption coefficient with the guidance of the coregistered ultrasound. The results have shown that, when the central ultrasound array area is in the neighborhood of 2 cm x 2 cm, which corresponds to the size of most commercial ultrasound transducers, the optical imaging is not affected. The results have also shown that the iterative inversion algorithm converges quickly with the guidance of a priori three-dimensional target distribution, and only one iteration is needed to reconstruct an accurate optical absorption coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.