Abstract

The estimation and subsequent use of tissue T1(x) parameters at each image location x can potentially lead to a more reliable classification of breast tissues. T1 values can be estimated using multiple (typically 3) MRI images of different flip angles. However, breathing and other slight movements can render the highly non-linear estimation procedure error-prone. In this paper, a simultaneous multiple image registration method is proposed to solve this problem. The registration method is built upon the idea of conserving inverse consistency and transitivity among the multiple image transformations. The algorithm is applied to both simulated data and real breast MRI images. The performance is compared with existing pairwise image registration method. The results clearly indicate that the simultaneous multiple image registration algorithm leads to much more accurate T1 estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.