Abstract

Simultaneous two-photon excited fluorescence (TPF) and second-harmonic generation (SHG) imaging is demonstrated using a single femtosecond laser and a scanning microscope. This composite nonlinear microscopic technique was applied to imaging DNA and chromosomes, and it was shown that the two different interaction mechanisms provide complementary information on the structure and nonlinear properties of these biological materials, beyond that achievable using either TPF or SHG imaging alone. The use of separate modes of detection, in reflection and transmission respectively, and the simultaneous nature of the acquisition of the two images allows pure TPF and SHG images in precise registration to be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.