Abstract
Accurate measurement of tissue-specific relaxation parameters is an ultimate goal of quantitative MRI. The objective of this study is to introduce a new technique, simultaneous multiangular relaxometry of tissue with MRI (SMART MRI), which provides naturally coregistered quantitative spin density, longitudinal and transverse relaxation rate constant maps along with parameters characterizing magnetization transfer (MT) effects. SMART MRI is based on a gradient-recalled echo MRI sequence with multiple flip angles and multiple gradient echoes and a derived theoretical expression for the MR signal generated in this experimental conditions. The theory, based on Bloch-McConnell equations, takes into consideration cross-relaxation between two water pools: "free" and "bound" to macromolecules. It describes the role of cross-relaxation effects in formation of longitudinal and transverse relaxation of "free" water signal, thus providing background for measurements of these effects without using MT pulses. Bayesian analysis is used to optimize SMART MRI sequence parameters. Data obtained on three participants demonstrate feasibility of the proposed approach. SMART MRI provides quantitative measurements of longitudinal and transverse relaxation rate constants of "free" water signal affected by cross-relaxation effects. It also provides information on some essential MT parameters without requiring off-resonance MT pulses. Magn Reson Med 77:1296-1306, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.