Abstract

PurposeTo optimize and test a diffusion-weighted imaging (DWI) echo-planar imaging (EPI) sequence with simultaneous multi-slice (SMS) excitation in the liver and pancreas regarding acquisition time (TA), number of slices, signal-to-noise ratio (SNR), image quality (IQ), apparent diffusion coefficient (ADC) quantitation accuracy, and feasibility of intravoxel incoherent motion (IVIM) analysis. Materials and methodsTen healthy volunteers underwent DWI of the upper abdomen at 3T. A SMS DWI sequence with CAIPIRINHA unaliasing technique (acceleration factors 2/3, denoted AF2/3) was compared to standard DWI-EPI (AF1). Four schemes were evaluated: (i) reducing TA, (ii) keeping TA identical with increasing number of averages, (iii) increasing number of slices with identical TA (iv) increasing number of b-values for IVIM. Acquisition schemes i-iii were evaluated qualitatively (reader score) and quantitatively (ADC values, SNR). ResultsIn scheme (i) no differences in SNR were observed (p=0.321−0.038) with reduced TA (AF2 increase in SNR/time 75.6%, AF3 increase SNR/time 102.4%). No SNR improvement was obtained in scheme (ii). Increased SNR/time could be invested in acquisition of more and thinner slices or higher number of b-values. Image quality scores were stable for AF2 but decreased for AF3. Only for AF3, liver ADC values were systematically lower. ConclusionSMS-DWI of the liver and pancreas provides substantially higher SNR/time, which either may be used for shorter scan time, higher slice resolution or IVIM measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.