Abstract

A complete understanding of how brain circuits function will require measurement techniques which monitor large-scale network activity simultaneously with the activity of local neural populations at a small scale. Here we present a useful step towards achieving this aim: simultaneous two-photon calcium imaging and multi-electrode array (MEA) recordings. The primary challenge of this method is removing an electrical artifact from the MEA signals that is caused by the imaging laser. Here we show that artifact removal can be achieved with a simple filtering scheme. As a demonstration of this technique we compare large-scale local field potential signals to single-neuron activity in a small-scale group of cells recorded from rat acute slices under two conditions: suppressed vs. intact inhibitory interactions between neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call