Abstract

Quantitative positron emission tomography (PET) imaging relies on accurate attenuation correction. Predicting attenuation values from magnetic resonance (MR) images is difficult because MR signals are related to proton density and relaxation properties of tissues. Here, we propose a method to derive the attenuation map from a transmission scan. An annulus transmission source is positioned inside the field-of-view of the PET scanner. First a blank scan is acquired. The patient is injected with FDG and placed inside the scanner. 511-keV photons coming from the patient and the transmission source are acquired simultaneously. Time-of-flight information is used to extract the coincident photons originating from the annulus. The blank and transmission data are compared in an iterative reconstruction method to derive the attenuation map. Simulations with a digital phantom were performed to validate the method. The reconstructed attenuation coefficients differ less than 5% in volumes of interest inside the lungs, bone, and soft tissue. When applying attenuation correction in the reconstruction of the emission data a standardized uptake value error smaller than 9% was obtained for all tissues. In conclusion, our method can reconstruct the attenuation map and the emission data from a simultaneous scan without prior knowledge about the anatomy or the attenuation coefficients of the tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.